Probabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems

ثبت نشده
چکیده

Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology based on Probabilistic Support Vector Machines (PSVMs) is proposed for identifying the contamination source location in drinking water distribution systems. To obtain the required data for training the PSVMs, several computer simulations have been performed over multiple combinations of possible contamination source locations and initial mass injections for a conservative solute. Then the trained probabilistic SVMs have been effectively utilized to identify the upstream zones that are more likely to have the positive detection results. In addition, the results of this method were compared and contrasted with Bayesian Networks (BNs) and Probabilistic Neural Networks (PNNs). The efficiency and versatility of the proposed methodology were examined using the available data and information from water distribution network of the City of Arak in the western part of Iran.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems

Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...

متن کامل

Adaptive Contamination Source Identification in Water Distribution Systems Using an Evolutionary Algorithm-based Dynamic Optimization Procedure

Accidental drinking water contamination has long been and remains a major threat to water security throughout the world. Consequently, contamination source identification is an important and difficult problem in the managing safety in water distribution systems. This problem involves the characterization of the contaminant source based on observations that are streaming from a set of sensors in...

متن کامل

Pilot-scale Evaluation of Various Approaches for the Decontamination of Drinking Water Distribution Systems

The safety and security of water supplies have come under reassessment in the United States in recent years. Issues ranging from public safety and health, ecological, and national security are under consideration. The terrorist attacks on the United States on September 11, 2001 and the subsequent delivery of Anthrax-contaminated letters through the mail raised concerns about protecting U.S. cit...

متن کامل

Real - time Contaminant Source Characterization in Water Distribution Systems

LIU, LI. Real-time Contaminant Source Characterization in Water Distribution Systems. (Under the direction of S. Ranji Ranjithan and G. Mahinthakumar.) Accidental/intentional contamination continues to be a major concern for the security management in water distribution systems. Once a contaminant has been initially detected, an effective algorithm is required to recover the characteristics of ...

متن کامل

Logistic regression analysis to estimate contaminant sources in water distribution systems

Accidental or intentional contamination in a water distribution system (WDS) has recently attracted attention due to the potential hazard to public health and the complexity of the contaminant characteristics. The accurate and rapid characterization of contaminant sources is necessary to successfully mitigate the threat in the event of contamination. The uncertainty surrounding the contaminants...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016